Skip to content

Simplification of Boolean Expression using Boolean Algebra

📘 Introduction

In Boolean Algebra, simplification means reducing a complex Boolean expression to its simplest form — by applying Boolean laws and theorems.

👉 Why simplify?

  • To design simpler logic circuits.
  • To use fewer logic gates.
  • To save cost, time, and power in hardware implementation.

🛠 Basic Steps to Simplify Boolean Expressions

  1. Write the given expression clearly.
  2. Apply Boolean theorems (like Identity Law, Null Law, De Morgan’s Law, etc.).
  3. Group similar terms wherever possible.
  4. Repeat simplification until no further reduction is possible.

🔥 Most Common Theorems used in Simplification

Law / TheoremExample
Idempotent LawA+A=AA + A = AA+A=A, A⋅A=AA \cdot A = AA⋅A=A
Identity LawA+0=AA + 0 = AA+0=A, A⋅1=AA \cdot 1 = AA⋅1=A
Null LawA+1=1A + 1 = 1A+1=1, A⋅0=0A \cdot 0 = 0A⋅0=0
Complement LawA+A‾=1A + \overline{A} = 1A+A=1, A⋅A‾=0A \cdot \overline{A} = 0A⋅A=0
Absorption LawA+(A⋅B)=AA + (A \cdot B) = AA+(A⋅B)=A, A⋅(A+B)=AA \cdot (A + B) = AA⋅(A+B)=A
Distributive LawA(B+C)=AB+ACA(B + C) = AB + ACA(B+C)=AB+AC
De Morgan’s TheoremA⋅B‾=A‾+B‾\overline{A \cdot B} = \overline{A} + \overline{B}A⋅B=A+B

✏️ Examples of Simplification


Example 1

Simplify: A+A⋅BA + A \cdot BA+A⋅B

Solution:

Apply Absorption Law: A+A⋅B=AA + A \cdot B = AA+A⋅B=A

Simplified Expression: AAA


Example 2

Simplify: A⋅A‾+BA \cdot \overline{A} + BA⋅A+B

Solution:

First, apply Complement Law: A⋅A‾=0A \cdot \overline{A} = 0A⋅A=0

Thus, the expression becomes: 0+B=B0 + B = B0+B=B

Simplified Expression: BBB


Example 3

Simplify: (A+B)⋅(A+B‾)(A + B) \cdot (A + \overline{B})(A+B)⋅(A+B)

Solution:

Apply Distributive Law: =A⋅(A+B‾)+B⋅(A+B‾)= A \cdot (A + \overline{B}) + B \cdot (A + \overline{B})=A⋅(A+B)+B⋅(A+B)

Expand further: =(A⋅A)+(A⋅B‾)+(B⋅A)+(B⋅B‾)= (A \cdot A) + (A \cdot \overline{B}) + (B \cdot A) + (B \cdot \overline{B})=(A⋅A)+(A⋅B)+(B⋅A)+(B⋅B)

Simplify terms:

  • A⋅A=AA \cdot A = AA⋅A=A (Idempotent Law)
  • B⋅B‾=0B \cdot \overline{B} = 0B⋅B=0 (Complement Law)

Thus: =A+A⋅B‾+B⋅A+0= A + A \cdot \overline{B} + B \cdot A + 0=A+A⋅B+B⋅A+0

Group AAA terms: =A(1+B‾+B)= A (1 + \overline{B} + B)=A(1+B+B)

But B‾+B=1\overline{B} + B = 1B+B=1 (Complement Law), so: =A(1+1)=A×1=A= A (1 + 1) = A \times 1 = A=A(1+1)=A×1=A

Simplified Expression: AAA


Example 4

Simplify: (A+B)‾\overline{(A+B)}(A+B)​

Solution:

Apply De Morgan’s Theorem: A+B‾=A‾⋅B‾\overline{A+B} = \overline{A} \cdot \overline{B}A+B​=A⋅B

Simplified Expression: A‾⋅B‾\overline{A} \cdot \overline{B}A⋅B


🔥 Important Tips for Simplification

TipExplanation
Group terms smartlyAlways try to group common variables
Apply Complement Law quicklyWhenever you see a variable and its complement
Use Absorption Law earlyIt makes expressions smaller
Know De Morgan’s Theorems by heartVery useful in dealing with NOT of AND/OR

Summary

  • Simplifying Boolean expressions reduces circuit complexity.
  • Use laws like Absorption, Complement, Identity, Distributive, De Morgan.
  • Always expand carefully and group terms logically.
  • The goal is minimal number of terms and variables.